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Anomalous diffusion and ballistic peaks: A quantum perspective
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The quantum kicked rotor and the classical kicked rotor are both shown to have truncated Le´vy distributions
in momentum space, when the classical phase space has accelerator modes embedded in a chaotic sea. The
survival probability for classical particles at the interface of an accelerator mode and the chaotic sea has an
inverse power-law structure, whereas that for quantum particles has a periodically modulated inverse power
law, with the period of oscillation being dependent on Planck’s constant. These logarithmic oscillations are a
renormalization group property that disappears as\→0 in agreement with the correspondence principle.
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I. INTRODUCTION

In the past two decades classical mechanics has eme
as an area of fundamental study in three distinct doma
The most familiar is that of regular, predictable motion, t
so-called integrable Hamiltonian systems with Kolmogoro
Arnold-Moser ~KAM ! tori on the energy shell. The mos
exotic are the completely nonintegrable Hamiltonian syste
in which trajectories exponentially separate from one
other. If a dynamical system such as a standard map is f
chaotic, meaning that all the KAM tori have become globa
unstable and disintegrated, producing a chaotic sea in p
space then the mean-square momentum of the system
creases linearly in time. Such classical systems are said t
diffusive and this relation between statistics and dynam
has been understood for nearly two decades@1#. The third
and largest category of motion is called weakly chaotic a
contains aspects of both regular and chaotic motion in
there are islands of KAM tori in a sea of chaos. The dyna
cal orbits can, rather than exponentially separating as the
in the case of strong chaos, stick to the cantori at the ph
space boundary between stable islands and the chaotic s
weakly chaotic systems@2# with a resulting anomalous dif
fusion, i.e., diffusion that can be either faster or slower th
normal.

Here we investigate the connection between a noni
grable classical Hamiltonian system, in the weak chaos c
and its corresponding quantum system. We wish to und
stand the sense in which a classical chaotic solution is
limit of the corresponding quantum solution to the Sch¨-
dinger equation as\→0. The resolution of this questio
bears on how good any semiclassical approximation is to
solution of quantum problems. For the sake of generality
study the paradigm of how chaos arises in simple Ham
tonian systems, namely, the standard map@1–3#:

pn115pn2K sin un ,

un115un1pn11 , ~1!
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wherepn is the scaled angular momentum after thenth kick
andun is the corresponding angle with period 2p. Equation
~1! describes the classical kicked rotor~CKR! as discussed in
Sec. III, and is also the basis of the quantum kicked ro
~QKR! using the Schro¨dinger equation as discussed in Se
IV. The numerical calculations of the CKR and QKR a
presented in these sections, respectively, and their re
compared in Sec. V.

The heart of our analysis is the numerical investigation
the properties of ensembles of trajectories in the phase s
where accelerator modes are present, such as depicted in
1. Unlike the strong chaos case where the momentum gr
diffusively, in the situation depicted in Fig. 1 the growth
momentum is anomalous. The problem of anomalous di
sion in the kicked rotor occurs for a small region of para
eter values that otherwise correspond to fully develop
chaos. In this region the mean-square momentum incre
in time as t2H with HÞ 1

2 but like normal diffusion this
anomaly is eventually quenched by quantum effects@4#. The
transition from normal diffusion to localization@5,6# and the
transition from anomalous to normal diffusion@4# has been

FIG. 1. The phase space representation of an accelerator m
for the CKR. The values of the nonlinear parameter in this and
the following figures isK56.9115.u and p are the dimensionless
quantities appearing in Eq.~1!.
6625 © 1998 The American Physical Society
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6626 57M. STEFANCICHet al.
analyzed in the QKR to gain insight into the validity of th
semiclassical approximation in chaotic systems@3–6#. The
exponentH can be related to the fractal dimension of t
underlying process and its statistics are often described u
nondiffusive Lévy stable processes@7–9#. This has led to
studies showing that certain deterministic, nonlinear,
namical equations with chaotic solutions have statistics
scribed by Le´vy stable distributions@10# and scaling that
obeys renormalization group relations@11#.

Hanson, Ott, and Antonsen@3# investigate, using numeri
cal calculations, the effect of finite\ on the manner in which
tiny integrable regions of phase space influence the statis
description of the evolution of the QKR. The integrable r
gions are small, relatively stable KAM islands in phase sp
for the CKR that are referred to as accelerator modes, s
they are in the neighborhood of accelerating fixed points@2#,
cf. Fig. 1. Such fixed points and the corresponding mo
cause the trajectories falling in their neighborhood to
trapped for long times and accelerated~so that their momen-
tum increases linearly in time! and consequently the globa
mean-square momentum increases faster than linearly. In
classical case the number of particles in an accelerator m
is known to decay as an inverse power law in time@2#. In the
quantum case it was found that for large values of\ in the
numerical calculations, the survival probability density d
creases exponentially in time with a rate of decay prop
tional to exp@21/\#. This dependence of the rate on the val
of Planck’s constant led Hanson, Ott, and Antonsen@3# to
interpret the exponential decrease in time of the surv
probability as a tunneling effect. On the other hand, by
creasing\ a transition value was found after which the dec
of the probability was no longer exponential. This transiti
has an interpretation in terms of time scales such that
exponential decay occurs for early times, those times ass
ated with large values of\, and this other decay occurs fo
later times associated with smaller values of\. We are herein
concerned with this different behavior and find this decay
be inverse power law. The scaling, as manifest in the inve
power law, suggests a renormalization group description
quantum phenomena.

To study how anomalous diffusion or, equivalently, t
Lévy distribution, arises in quantum dynamical systems
present equivalent calculations for the CKR and the Q
and compare the corresponding survival probabilities as\ is
varied. It is well known that with the choice of streng
parameter,K56.9115 in Eq.~1!, that gives rise to accelera
tor modes, the CKR generates highly correlated fluctuati
in the momentum variable leading to anomalous diffus
with H512b/2. Hereb is the index of the inverse power
law memory function that can be associated directly with
slope of the inverse power-law decay of the particle popu
tion trapped in the accelerating modes@2,10,12#. Only those
trajectories trapped by the accelerator modes contribut
the anomalous diffusion and there are always two s
modes, one accelerating particles to positive momentum
the other accelerating particles to negative moment
Therefore, disregarding the irrelevant trajectories that
moving erratically in the chaotic sea, we consider this d
namical model, the CKR, to be a generator of a virtua
dichotomous fluctuation process. Thus, we examine a t
state stochastic model in Sec. II to further our understand
ng
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of both the CKR and QKR. In fact we find that all three ha
the same basic dynamical evolution, that being a trunca
Lévy distribution with a propagating peak at both its positi
and negative fronts.

In Sec. V we determine that both the CKR and the QK
have a survival probability that decays as an inverse po
law for \→0. However, in the quantum case we find that t
inverse power law has a modulation that is periodic in
logarithm of time with a period of oscillation that diverges
\2a wherea'0.14. This dependence is described by a p
tulated quantum coherency mechanism that retains the s
ing property of the cantori in the vicinity of the accelerat
mode, while yielding a survival probability that goes over
the appropriate classical result as\→0. In Sec. VI we for-
mulate some conclusions based on these calculations reg
ing the correspondence principle and microscopic scaling

II. GOLD MODEL

The statistical approach to classical anomalous diffus
has a long history and has recently been the subject
number of papers; see, for example, Refs.@12–14#. This sto-
chastic perspective rests on the simple one-dimensional
ferential equation:

dx

dt
5j~ t !. ~2!

Of special interest is the case wherej(t) is a two-state sto-
chastic process taking the values6W. The evolution of the
probability densityp(x,t), wherep(x,t)dx is the probability
that the dynamical variable is in the interval (x,x1dx) at
time t, is given by the exact integrodifferential equatio
@12,14#,

]

]t
p~x,t !5E

0

t

^j~ t !j~ t8!&
]2

]x2 p~x,t8!dt8. ~3!

It is clear from Eq.~3! that the character of the diffusio
depends on the choice of the correlation for thej fluctuations
in Eq. ~2!. Normal diffusion is a consequence of the ex
tence of a microscopic time scale, defined by

t5E
0

`

Fj~ t !dt, ~4!

where Fj(t) is the stationary two-timej-correlation func-
tion. If the correlation decays quickly enough to maket fi-
nite, we can explore the random-walk process for timet
very large compared tot. The time scale separation betwee
the random-walk process and the velocity fluctuations allo
the central limit theorem to work, so that fort,` a Gaussian
diffusion process for the two-state model is eventua
reached. The diffusion is anomalous if the correlations of
fluctuations are stationary and have the asymptotic inve
power-law form

Fj~ t !5
^j~ t !j~0!&

^j2&
5

A

~A1/b1t !b ~5!

and the power-law index is in the range
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57 6627ANOMALOUS DIFFUSION AND BALLISTIC PEAKS: A . . .
0,b,1. ~6!

Whent→`, as Eq.~3! does for the inverse power law wit
an index in the range~6!, there is no time scale separatio
between the macroscopic~diffusive! and the microscopic
processes~fluctuations ofj! and the resulting statistics ar
not Gaussian in general. In fact it has been shown that un
certain conditions, that is, when the constant in the deno
nator in Eq. ~5! can be neglected, Eq.~3! is a fractional
derivative whose solution is bimodal@14#.

The model given by Eq.~3! with condition~5! has so far
been discussed in a stochastic or random-walk context. It
been shown elsewhere that there is also a dynamical rea
tion of this model@12#; one in which the stochastic nature
the velocity is generated by an intermittent chaotic m
namely, the map of Geisel, Nierwetberg, and Zacherl@15#.
This relation was established by Zumofen and Klafter@16#
where they showed that such a map produced a long-
a-stable Lévy process. Such a Le´vy process, defined as th
solution of the Bachelier-Smoluchowski-Chapma
Kolmogorov~BSCK! chain condition, is Markovian@7#, but
the variablex, at any finite time, can change by an arbitrar
large amount, with a given inverse power-law distributio
The process described by Eq.~3!, supplemented by Eqs.~5!
and ~6!, is by contrast non-Markovian. However, it is po
sible to prove@12# that the statistical equivalence of th
non-Markovian process with ana-stable Lévy process is
guaranteed by the possibility of replacing the time nonloc
ity of the dynamical process with a space nonlocality. T
interchange of space and time produces the same effect
process that is originally nonlocal in space. Yet, at ev
finite time, the equivalence of the solution to Eq.~3! with the
‘‘true’’ Lé vy process cannot be complete, because a L´vy
process is characterized by infinite central moments ofx;
whereas in the random-walk approach~2!, with excursions
based on steps having a finite speedW, the distribution of
the diffusing variable at timet is truncated atuxu5Wt. No
trajectory can travel, in a timet, a distance larger thanuxu
5Wt, corresponding to the rare event in whichj(t) does not
change sign for the entire time interval, implying, at eve
finite time, an accumulation of particles atx52Wt and at
x51Wt. This accumulation results in two intense peaks
the distribution of the diffusing variablex, as clearly shown
by the results of numerical calculations@12,17#, see also Fig.
2. Nonetheless, the distribution will asymptotically becom
an a-stable Lévy process as the peaks recede to infinity a
their amplitudes fade to zero. Since this model has a tr
cated Lévy distribution as a solution it has been called t
generator of Le´vy distributions~GOLD! model @18#.

The one-dimensional, centrosymmetric form of the Le´vy
distribution is given by

pm~x,t !5
1

2 E
2`

`

eikxe2btukumdk, ~7!

whereb.0. Only a handful of explicit forms of the Le´vy
distribution are known for specific values of the Le´vy index,
for example, the Gaussian form52 and the Cauchy form51.
In terms of Eq.~7!, where 1<m<2 in the present case@12#,
we can write for the truncated Le´vy distribution
er
i-
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a-
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p~x,t !5pm~x,t !Q~ uxu2Wt!1
P~ t !

2
$d~x1Wt!

1d~x2Wt!%, ~8!

whereQ~•! is the Heaviside unit step function; the amplitud
of the peaks is determined by the correlation function~5!,

P~ t !5kFj~ t !, ~9!

andk is a constant that is determined by the specific reali
tion of the numerical calculation. There is excellent agre
ment between the form of the solution given by Eq.~8! and
numerical experiments on the CKR as shown in Fig. 2,
Ref. @18#. Thus, we have that the GOLD model results in
truncated Le´vy distribution and is characterized by two ba
listic peaks, whose intensity decays in time as the correla
function ~5!.

III. NUMERICAL RESULTS FOR THE CKR

The Hamiltonian for the classical kicked rotor is

H5
P2

2I
2Iv0

2 cosu (
j 52`

`

dS j 2
t

TD , ~10!

where u is an angular coordinate of period 2p, P is the
angular momentum,I is the moment of inertia,v0 is the
natural frequency of small oscillations, andT is the time
interval between kicks. The integration of Hamilton’s equ
tions of motion over a single period of a kick yields th
standard map given by Eq.~1!, where the strength of the kick
is K5v0

2T2 and the scaled momentum is given byp
5PT/I . Thus, the evolution is completely determined by t
numerical value of the parameterK.

We iterate the standard map for a value of the stren
parameter,K56.9115, to obtain the accelerator mode ind
cated in Fig. 1 from the trajectories in the vicinity of th
accelerator fixed point~p/4,0!. It is apparent from this figure
that the KAM islands are encircled by cantori that separ
the accelerator mode from the chaotic sea. These phase s

FIG. 2. Classical distributionP(p,t) after 20 iterations of the
map ~1!, continuous line, and the theoretical prediction of Eq.~8!,
boxes. The quantityp is the dimensionless momentum from Eq.~1!
and the probability distribution is normalized to 1.
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6628 57M. STEFANCICHet al.
structures manifest a self-similarity, see, for exam
@9,17,19#, and tend to entrap orbits that approach the ac
erator mode too closely.

A careful numerical study of anomalous diffusion in th
CKR due to accelerator modes in the standard map
made by Ishizaki and co-workers@19#. These authors estab
lished that the exponent characterizing anomalous diffus
^p2(t)&}t2H and the exponent of the correlation functio
Fj(t)}1/tb are related byH512b/2. Further, they found
that the waiting time distribution index,f(t)}1/tm, is found
to be m521b5422H. The waiting time distribution
comes from continuous time random-walk theory and de
mines the probability that a walker~orbit! will wait a time
betweent and t1dt in its present state before making
transition to the other state@17#. Ishizaki and co-workers
make a careful theoretical and numerical analysis of the
mentum distribution to verify these relations among the
ponents. A direct numerical evaluation of the waiting tim
distribution f(t) was made by Klafter, Zumofen, an
Shlesinger@17#. These latter calculations spanned six d
cades in time scale, and resulted in slight and seemin
irregular oscillations of the slope around the value ofm in the
theoretical inverse power-law form off(t), but the value
was consistent with that found forH in the corresponding
study of momentum diffusion@19#.

According to the theory of Allegrini, Grigolini, and Wes
@12# sketched in Sec. II, the intensity of the ballistic pea
delimiting the extension of the Le´vy distribution was also
observed numerically by Zumofen and Klafter@9# using a
completely different argument. The relation between
peaks and the correlation function,P(t), depicted in the
solution to the GOLD model, Eq.~8!, suggests that we nee
only examine the behavior of the peaks in the CKR calcu
tions to determine their long-time correlation properties. T
assumption turns out to be quite good and results in a gre
enhanced efficiency in the calculations, especially for th
of the QKR presented in the next section.

The inverse power-law form of the classical waiting tim
distribution function was first determined by Hanson, Cr
and Meiss@20# in the context of partially destroyed KAM
tori. They made use of the self-similar system of rate eq
tions for the fluxes across the zones of quasistability s
rounding the accelerator modes and simplified the picture
assuming that successive crossings of these cantori ca
treated as a Markov process. The chaotic dynamics thus
come statistically equivalent to a random walk on a hier
chial lattice or Markov tree. Here we follow Klafter
Zumofen, and Shlesinger@17# and simplify the argumen
even further by introducing a hierarchy of time intervals
approximate, by a sum of exponentials, the probability d
sity f(t) of a trajectory to enter the system of belts of cant
from the chaotic sea and to stay in the cantori system fo
time t before returning to the chaotic sea:

f~ t !5 (
n51

`

~w2q!n exp@2wnt#, ~11!

wherew is a rate andq is the probability of that rate occur
ring in the process of interest. The dominant behavior of
e
l-
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probability density~11! is determined by scaling time with
the rate w to obtain the approximate scaling relatio
qw2f(wt)'f(t).

Consider a functionF(t) that is homogeneous so that fo
two parametersa andb we have

F~bt!5aF~ t !. ~12!

This equation has a solution of the form@21#

F~ t !5
A~ t !

ta , ~13!

where by substitution of Eq.~13! into Eq. ~12! and equating
terms we find that the power-law index is

a5 ln a/ ln b ~14!

and the functionA(t) is periodic in lnt with period lnb.
Thus, the scaling equation for the probability density~11!
has an inverse power-law solutionf(t)5A(t)/tm, where the
power-law index is given bym521 ln q/ln w, correcting a
typo in Ref.@17#. The probability densityf(t) is identical to
the waiting time distribution, and the second derivative
the waiting time distribution yields the correlation functio
@12#. On the other hand, the two time integrations necess
to derivef(t) from Fj(t) do not alter the structure of th
power-law modulation. To see this take the derivative of E
~13!

d

dt

A~ t !

ta 5
dA~ t !/dt2aA~ t !

ta11 [
G~ t !

ta11 , ~15!

whereG(t) is defined by the numerator of the middle equ
tion, and it is evident thatG(t) is periodic in lnt with period
ln b. Thus, the only qualitative difference between the ori
nal functionF(t) and its derivative is that the index on th
inverse power law has increased by 1. This means that if
choose for the correlation function

Fj~ t !5
g~ t !

tb ~16!

the waiting time distribution function would be

f~ t !5
h~ t !

tb12 ~17!

and bothg(t) andh(t) maintain the logarithmically periodic
structure with the same period. In this way we can relate
index of the inverse power-law correlation function with th
parameters in Eq.~11! to obtainb5 ln q/ln w. Thus, we can
relate the phenomenological description of the waiting ti
in the CKR to the exact result of the GOLD model.

To verify the prediction thatb5 ln q/ln w in the case of
the standard map, we used as an initial condition a Gaus
distribution centered near the accelerator mode. This ch
mimics a coherent quantum state with\50.005 and is com-
pared with the subsequent quantum calculation. We num
cally follow only those orbits that sticks to the accelera
mode, and neglect the other trajectories, that is, we foll
the ballistic peaks. The calculated area under the balli
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57 6629ANOMALOUS DIFFUSION AND BALLISTIC PEAKS: A . . .
peaks as a function of time is depicted in Fig. 3. The slope
the curve is remarkably close tob520.67 the value pre-
dicted by the numerical calculation ofH via the second mo-
ment of the mean square momentum@17,19#. The broadened
initial condition implies that a given number of trajectori
are located within the stable part of the accelerator mo
These trajectories remain confined there forever, and are
sponsible for a permanent ballistic peak, which is percei
as a long-time plateau depicted in the solid curve. With
such trajectories in the plateau there would be an even
crossover at long time to an exponential decay. This la
decay is related to round-off errors depending on the co
puter precision. We note in fact that round-off errors a
indistinguishable from externally generated random fluct
tions of a given intensity, the effect of which is known to b
a crossover from the inverse power-law behavior to an
ponential one@22,23#. At the same time, we note that th
calculated curve does not imply oscillations as intense
those of Ref.@9#, probably as a consequence of the fact t
the method of following the peak is more reliable than do
the full calculation at each time step.

IV. NUMERICAL RESULTS IN THE QUANTUM CASE

We now turn our attention to the QKR. The Hamiltonia
is, of course, the same as that in the previous section an
now wish to numerically integrate the Schro¨dinger equation
for the kicked rotor,

i\
]

]t
c~u,t !52

\2

2I

]2

]u2 c~u,t !2Iv0
2 cosu

3 (
j 52`

`

d~ j 2t/T!c~u,t !. ~18!

Following Hanson, Ott, and Antonsen@3# we introduce the
scaled timet̄5t/T and the scaled periodt5\T/I so that Eq.
~18! reduces to

FIG. 3. Population of the peakP(t) as a function of time. The
solid line denotes the classical result while the dashed lines
quantum calculations for different values of\. The dotted-dashed
line indicates the theoretical prediction of@9#. The time t is ex-
pressed in the number of kicks and the normalization ofP(t) is
P~1!51.
f
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we

i t
]c

] t̄
52

t2

2

]2c

]u2
2K̄ cosu (

j 52`

`

d~ t̄2 j !c. ~19!

Here there are two independent parameters rather than o
in the classical case. The classical parameterK5K̄t deter-
mines the onset of chaos atK'0.96 and as is well known for
large values ofK the diffusion coefficient is given byD
'K2/2 @1#. The scaled periodt is proportional to Planck’s
constant and is therefore a quantum parameter that vani
in the classical limit. We denote the expansion of the wa
function in the basis of the eigenfunctions of the angu
momentum operator$cm%,

uc~ t !&5(
m

Cm~ t !ucm&. ~20!

The periodicity of the Hamiltonian~10! enables us to de
scribe the quantum evolution in terms of Floquet theo
Within the framework of the Floquet formalism the tim
evolution is determined via successive application of a o
cycle unitary propagatorĈ, which maps the wave function a
time t into the wave function at timet1T. The eigenvalue
problem for the propagatorĈ may be written as

Ĉuln&5exp@2 iEn#uln&, ~21!

where theEn are called quasienergies and for a bound
system are real numbers. The corresponding eigenfunc
uln& are referred to as quasienergy states or Floquet state
may be shown thatuln& are the eigenvectors of the Hermi
ian operatorĤ2 i\]/]t and consequently form a comple
orthonormal basis. To obtain the matrix representation oĈ
in the angular momentum eigenbasis notice that

^c j uc~T!&5(
k

^c j uĈuck&^ckuc~0!& ~22!

and if we chose the initial state such that

^ckuc~0!&5dk, j 8 , ~23!

then

^c j uc~T!&5^c j uĈuc j 8&. ~24!

Thus thej 8 column of the matrix representation ofĈ may be
calculated using the initial condition~23! and integrating the
time-dependent Schro¨dinger equation over one period of th
perturbation. We can then numerically solve the eigenva
problem~21!. For timest5kT, k51,2,... the wave function
may be written as

uc~kT!&5(
m

exp@2 iEmk#ulm&^lmuc~0!&. ~25!

It is apparent from Eq.~25! that only the Floquet states ove
lapping the initial wave function contribute to its subseque
time evolution. These states are frequently referred to as
Floquet spectrum of the wave function.

re



th
ng
nt

ba

bl
on
f
de
rg
o-
a
a
to
te
s o

ion
i
n
v

pr
r

in
er

k
an
d
ha
th
i
o

of
cu-

at
e

ted

ve a
is

ss
wer

e
re-
de-
for
e
not

ate
is

nd
to

ce
ot

e
ns
ion
ue
-

on
he
ct
ng-
-
as

um

ed

r

ed
no
as

in a
s-
r-

se
an
in

he

6630 57M. STEFANCICHet al.
Exploiting the kicked nature of the system we can cast
quantum time evolution as the application of the followi
mapping to the wave function in the momentum represe
tion:

Cm~ tn11
2 !5(

m8
~ i !m8Jm8S K

\ DCm1m8~ tn
1!, ~26!

where Jm denotes the Bessel function of orderm and
$Cm(t)% are the expansion coefficients in the momentum
sis at timet, see for example@24#. The superscript notation
on the time indicates the value just before~2! or just after
~1! the kick.

To make the numerical calculation as efficient as possi
we use fast fourier transform techniques to perform the c
volution in Eq. ~26!, but notice that in the exploration o
small \ values the dimension of the vector necessary to
scribe the entire wave function becomes excessively la
For this reason we limit the calculation to following the ev
lution of the ballistic peak, just as we did in the classic
case. This procedure affords significant numerical adv
tages. Due to the finite bandwidth of the Floquet opera
spectrum, only a small part of the wave function contribu
to the peak dynamics. Thus, by concentrating our analysi
the peak, we are able to explore smaller values of\ and/or
longer times than has been done in previous calculat
@3,4,25#. Nevertheless, according to the results obtained
Ref. @12#, this procedure provides the same information co
cerning the anomalous dynamics that a complete wa
function analysis would yield. This is certainly true for\ so
small and time so short as to make the correspondence
ciple valid. However, a deviation from the inverse powe
law decay of the classical correlation function is a good
dicator of the birth of quantum phenomena, even at v
short times.

The calculational strategy of following the ballistic pea
rather than the entire wave function is the most import
aspect of our numerical treatment. This approach is base
the insight provided by the GOLD model where we saw t
the time dependence of the ballistic peaks is given by
correlation function. An example of a complete calculation
shown in Fig. 4 where we reproduce one of the calculation

FIG. 4. Quantum probability density after 20 iterations for t
QKR, to be compared with its classical counterpart in Fig. 2.
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Ref. @3# for a somewhat smaller value of\. At first sight Fig.
4, like Fig. 2, may be interpreted as a strong confirmation
the analogy between the QKR and the CKR. In their cal
lation Hanson, Ott, and Antonsen@3# observed that the
‘‘sharp peaks’’ travel linearly in time and leave behind wh
they referred to as a ‘‘wake.’’ From the solution to th
GOLD model given by Eq.~8! we see that for sufficiently
small values of Planck’s constant that their wake is expec
to eventually become a truncated Le´vy distribution in mo-
mentum space and the peaks rather than being sharp ha
finite area. Note, further, that the amplitude of the peaks
given by the correlation function of the dichotomous proce
and therefore this term ought to decay as an inverse po
law. However, like Hanson, Ott, and Antonsen@3#, we find
that the intensity of the ballistic peak in Fig. 4 decays in tim
as an exponential, in striking contrast with the classical p
diction ~8!. The reason for this discrepancy between the
cay of the peaks in the QKR and the CKR is the fact that
large values of\ the dominant mechanism for exiting th
region of the accelerator mode is tunneling, something
available to the CKR.

Hanson, Ott, and Antonsen@3# find that a transition oc-
curs, for the numerical value of the\ used in the calculation
smaller than a critical value, out of the region where the r
of exponential decay in time of the survival probability
exp @1/\# to some other dependence on\, which is not de-
termined analytically. Based on our analysis of the CKR a
the GOLD model we expect an inverse power-law decay
be recovered as\→0 in agreement with the corresponden
principle. However, we find that the classical result is n
fully recovered as\→0 and effects of a purely quantum
origin are present in all the explored\ regions.

The initial condition for the QKR is a Gaussian wav
packet to mimic the classical ensemble of initial conditio
chosen in a way that the corresponding Wigner distribut
has its maximum in proximity of the accelerator mode. D
to this particular choice of initial condition the Wigner func
tion can be directly interpreted as a probability distributi
that is then used to determine the initial conditions in t
corresponding classical simulation. This allows for a dire
comparison of the quantum and classical evolutions. Cha
ing \ obviously affects the width of the initial quantum dis
tribution and therefore the set of classical initial states
well. In Fig. 3 we graph the area of the peak in the quant
calculations corresponding to different values of\ as a func-
tion of time. We see that, for\ smaller than 1022, the area of
the peak,P(t), exhibits the algebraic decay in time expect
from the classical studies@9,16#. This type of decay implies
that the dynamics of the QKR follows that of the CKR fo
small \. On the other hand, for\.1022, an exponential
decay for the peak is found in agreement with that obtain
in Ref. @3#. In the corresponding classical simulations
significant dependence on the initial distribution width h
been detected.

The results obtained do appear, however, to depend
subtle way on the location of the initial state. Further inve
tigation of this sensitivity is required to completely unde
stand the nonstationary nature of the phenomenon.

We find that in all the quantum calculation the inver
power-law behavior is eventually lost and replaced by
exponential decay. We interpret this second transition
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terms of two phenomena, namely, the tunneling between
fractal region of the cantori and the stochastic sea, and
quantum induced breakdown of classical self-similarity@4#.
We do not pursue an investigation into this effect here,
rather leave it as a subject for future work. Thus, leaving
eventual crossover from inverse power law to exponen
decay aside, we see that the QKR and CKR behave simila
both having an inverse power-law decay for sufficien
small \. However, the decay of the peak intensity in t
quantum calculation is modulated, with the modulation fun
tion being periodic in the logarithm of the time. The log
rithmic oscillations suggest a renormalization group a
proach to an understanding of the quantum decay.

V. LOGARITHMIC OSCILLATIONS AS A
MANIFESTATION OF QUANTUM COHERENCE

We have seen that the numerical calculations of the Q
show the ballistic peaks decaying as modulated inve
power laws in time, eventually going over to an exponen
decay. This picture is made compelling by the extrem
good agreement between the numerical results and the fi
function

P~ t !5
A11A2 cos~Y ln t !

tb exp~2lt ! ~27!

as shown in Fig. 5. The function~27! has five parameter
A1 , A2 , b, l, andY that are fit to the results of the numeric
calculation using a mean-square minimization progr
Equation~27! has the form of the solution to the renorma
ization equation in Sec. III, Eq.~12!, whenl50. However,
in spite of the fact that the scaling relation produces logar
mic oscillations we shall see that the frequencies of the
cillations depicted in Fig. 5 do not behave as those in
~13!. We see from the general solution to~12! given in @26#
that upon increasing the value of lnb, the period of the loga-
rithmic oscillations, the intensity of the oscillations in
creases. This behavior is not consistent with the corresp
dence principle, which, since the oscillations are not pres
in the CKR calculations, would suggest that the intensity
the oscillation for the QKR should disappear as\→0, not

FIG. 5. Decay of the quantum peak for\50.001, solid line, and
its numerical fit obtained by using Eq.~33!. The fit is shifted for
graphical purposes. The normalization onP(t) is P~1!51.
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increase. Thus, as the frequency decreases~period increases!
the intensity of the oscillations should go to zero. This lat
behavior is observed in Fig. 6 where the frequency of
oscillation in the QKR is plotted versus ln~1/\!. Therefore
the source of the quantum modulation requires the introd
tion of a new physical mechanism.

We are guided by the correspondence principle and
renormalization group properties we wish to retain in o
selection of the quantum form off(t) to replace Eq.~11!.
The exact correspondence between the classical and qua
calculations is lost on a time scale given by Berry@27# as
tB}(1/g)ln(1/\) with g being the Lyapunov exponent fo
the process. After this time there is an extended interval d
ing which the dominant behavior of both calculations of s
vival probability is the inverse power-law decay, resultin
from the scaling properties of both the CKR and QKR. W
assume a quantum mechanism to account for the existen
oscillations in the QKR that has no classical analogue. T
mechanism accounts for the transitions between accele
modes that works in concert with the classical mechan
and which retains coherence across the fractal bounda
We notice that a straightforward way of modifying Eq.~13!,
to incorporate this coherence effect, is to assign a phas
the quantum transition rate;

w̃5weiB, ~28!

so that the scaling relation found earlier is replaced with

f̃~w̃t !'
1

~w̃2q!
f̃~ t ! ~29!

and the quantum coherent effect is given by the real par
the scaling function. The solution to Eq.~29! is of the same
form as that given earlier, a modulated inverse power la
except that the inverse power-law index is complex and m
be thought of as a complex fractal dimension@28#:

a521
ln q

ln q1 iB
5m2 ik, ~30!

where the real part of the index is

FIG. 6. The dependence of the renormalization group oscilla
dimensionless frequencyY in Eq. ~33! on 1/\ as obtained by fitting
the quantum peak decays. The dashed line denotes a powe
fitting with slopea50.14
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m521
ln q ln w

~ ln w!21B2 ~31!

and the imaginary part of the index is

k5
B ln q

~ ln w!21B2 . ~32!

We therefore obtain

Re f̃~ t !'
A2 cos~k ln t !

tm ~33!

and when the ‘‘coherence strength’’ is very small,B/ ln w
!1, this reduces to

Re f̃~ t !'
A2 cos~Y ln t !

tm , ~34!

where

Y[
B

ln w
~m22!. ~35!

To recover the form of the fitting function we recall th
the frequency of oscillation~35!, must vanish as\→0, so
that Eq.~34! cannot be the sole contribution to the quantu
waiting time distribution function. Therefore to obtain th
proper scaling behavior of the waiting time distribution
the classical limit we add the contribution of~34! and~13! to
obtain

fquan~ t !'
A1

tm 1ReFA2

ta G5

A11A2 cosS 2p ln t

ln T D
tm . ~36!

Here the complex fractal dimension is given bya5m
1 i2p/ ln T, and the imaginary part of the fractal dimensio
gives the period of modulation of the inverse power law, s
Ref. @28#, and lnT52p ln w/@B(m22)# is the period of oscil-
lation induced by the coherence mechanism.

We have seen that the inverse-power-law structure mo
lated by logarithmic oscillations remains invariant upon d
ferentiation and integration so the structure of the correla
function and the area of the peak will maintain the sa
structure. In the formula we use to fit the decay of the are
the peak~27! we include also a long-time exponential dec
that does not have any justification in the present model,
was detected in the calculations and may play an impor
role in future work. The power-law indexb in Eq. ~27! is
expected to be the same as in the classical case

f~ t !5 lim
\→0

fquan~ t !, ~37!

since in the case of very small Planck’s constant, the t
after which the exponential decay becomes important
beyond the range of our observation, i.e., the parameterl is
always extremely small. Further, to ensure thatP(t) is posi-
tive definite we must have thatA1.A2 . We focus on the
e

u-

n
e
of

ut
nt

e
s

adoption of the fitting formula~27! to determine the param
eter lnT and from it the coherence phaseB, which must
satisfy

lim
\→0

B50. ~38!

The determination of this crucial parameter allows us to
sess the amount of quantum coherence present in the s
ingly classical behavior. In Fig. 6 we show the depende
of the frequency of oscillation of the waiting time distribu
tion function on the value of Planck’s constant used in
calculation. From the negative slope of the curve we re
the conclusion that the coherence parameterB must have the
functional form

B}\a ~39!

with a.0.14. Thus, the coherence resulting in logarithm
oscillations is a genuinely quantum effect, due to the dep
dence of the frequency of oscillation on\, and seems to be a
slowly decaying function of\ so as to vanish in the classica
limit.

VI. CONCLUSIONS

We see from Fig. 5 that the agreement between the fit
function and the numerical results are so good as to mak
impossible to distinguish the numerical result from the
We think that this is compelling evidence that the logari
mic oscillations are not an artifact of the calculational tec
nique. Furthermore, due to the fact that the classical c
does not contain such oscillations for the parameter va
chosen in the calculation, but results an unmodulated inve
power-law behavior, we reach the conclusion that these
cillations are of a quantum origin.

We distinguish a number of different time domains in t
present calculation. First of all is the time scaletB identified
by Berry @27# and such that the results of the classical a
quantum cases diverge wheretB}(1/g)ln(1/\) with g being
the Lyapunov exponent for the process. This time scale
fairly short and is observed in Fig. 3, where we see the on
of logarithmic oscillations in under 10 kicks that are o
served quantum mechanically, but not classically. This
also the time scale on which Hanson, Ott, and Antonsen@3#
account for the exponential decay of the survival probabi
by means of tunneling. The second time scale occurs a
this tunneling region for values of Planck’s constant,\
<1022, after which time the mechanism for escape is
longer tunneling so the decay transitions from exponentia
inverse power law. Thus, after the crossover, anomalous
fusion appears in the quantum domain@4#. Even if the quan-
tum and classical results diverges at early time~for t,100!
@4#, the subsequent quantum behavior resembles the clas
one, namely, that the area under the peak shows an inv
power-law decay, however, one that is modulated with lo
rithmic oscillations. This behavior is eventually dominat
by exponential decay, which is not necessarily related to
tunneling processes found by Hanson, Ott, and Antonsen@3#,
but rather may be related to the reemergence of the w
function in the chaotic sea for small values of Planck’s co
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stant. We shall study this late-time breakdown in detail in
forthcoming paper.

The quantum intermediate time region, where the co
spondence between the classical and quantum evolutio
lost, but retains the overall power-law decay, has been c
fully explored in this paper. We found that quantum m
chanical properties show up under the form of oscillatio
around the expected inverse power-law decay of the pe
We have established that these oscillations can be re
duced very well adopting a fitting function the structure
which is defined on the bases of renormalization group ar
ments, including a genuine quantum coherence mechan

Furthermore, we have to say that only a few oscillatio
can be detected. At very small values of\ the frequency
s

in

l

l

av
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e-
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s
s.
o-
f
u-
m.
s

becomes extremely low making it very difficult to see mo
than two or three oscillations while with bigger values of\
an early transition to normal diffusion and so to exponen
decay of the peak cancels the effect@3#. In conclusion, the
meaning of the numerical results of this paper is that dev
tions from the classical behavior occurs from the earli
evolution under the form of a quantum generated modula
of the classical results.
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