PHYSICAL REVIEW E VOLUME 57, NUMBER 6 JUNE 1998

Anomalous diffusion and ballistic peaks: A quantum perspective
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The quantum kicked rotor and the classical kicked rotor are both shown to have truncayetidtebutions
in momentum space, when the classical phase space has accelerator modes embedded in a chaotic sea. The
survival probability for classical particles at the interface of an accelerator mode and the chaotic sea has an
inverse power-law structure, whereas that for quantum particles has a periodically modulated inverse power
law, with the period of oscillation being dependent on Planck’s constant. These logarithmic oscillations are a
renormalization group property that disappearsfasO in agreement with the correspondence principle.
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[. INTRODUCTION wherep, is the scaled angular momentum after ttib kick
and 6,, is the corresponding angle with periodr.2Equation

In the past two decades classical mechanics has emerg€) describes the classical kicked rot@KR) as discussed in
as an area of fundamental study in three distinct domainsSec. Ill, and is also the basis of the quantum kicked rotor
The most familiar is that of regular, predictable motion, the(QKR) using the Schidinger equation as discussed in Sec.
so-called integrable Hamiltonian systems with Kolmogorov-IV. The numerical calculations of the CKR and QKR are
Arnold-Moser (KAM) tori on the energy shell. The most presented in these sections, respectively, and their results
exotic are the completely nonintegrable Hamiltonian systemsompared in Sec. V.
in which trajectories exponentially separate from one an- The heart of our analysis is the numerical investigation of
other. If a dynamical system such as a standard map is fullthe properties of ensembles of trajectories in the phase space
chaotic, meaning that all the KAM tori have become globallywhere accelerator modes are present, such as depicted in Fig.
unstable and disintegrated, producing a chaotic sea in phade Unlike the strong chaos case where the momentum grows
space then the mean-square momentum of the system idiffusively, in the situation depicted in Fig. 1 the growth in
creases linearly in time. Such classical systems are said to lmomentum is anomalous. The problem of anomalous diffu-
diffusive and this relation between statistics and dynamicsion in the kicked rotor occurs for a small region of param-
has been understood for nearly two decadds The third  eter values that otherwise correspond to fully developed
and largest category of motion is called weakly chaotic andhaos. In this region the mean-square momentum increases
contains aspects of both regular and chaotic motion in thain time ast?" with H#3 but like normal diffusion this
there are islands of KAM tori in a sea of chaos. The dynami-anomaly is eventually quenched by quantum effgéisThe
cal orbits can, rather than exponentially separating as they dmansition from normal diffusion to localizatidi®,6] and the
in the case of strong chaos, stick to the cantori at the phadeansition from anomalous to normal diffusi¢d] has been
space boundary between stable islands and the chaotic sea in
weakly chaotic systemi2] with a resulting anomalous dif-
fusion, i.e., diffusion that can be either faster or slower than » .
normal.

Here we investigate the connection between a noninte-
grable classical Hamiltonian system, in the weak chaos case
and its corresponding quantum system. We wish to under- 3.4
stand the sense in which a classical chaotic solution is the
limit of the corresponding quantum solution to the Sehro 3.0
dinger equation a%i—0. The resolution of this question
bears on how good any semiclassical approximation is to the 2-2-]
solution of quantum problems. For the sake of generality we
study the paradigm of how chaos arises in simple Hamil-
tonian systems, namely, the standard rfibp3]:
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Pn+1=Pn—K SN 6y, FIG. 1. The phase space representation of an accelerator mode
for the CKR. The values of the nonlinear parameter in this and in
the following figures iK=6.9115.9 and p are the dimensionless

0ns1= 600+ Prs1, (1) quantities appearing in Eql).
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analyzed in the QKR to gain insight into the validity of the of both the CKR and QKR. In fact we find that all three have
semiclassical approximation in chaotic systeffs6]. The the same basic dynamical evolution, that being a truncated
exponentH can be related to the fractal dimension of the Lévy distribution with a propagating peak at both its positive
underlying process and its statistics are often described usir@nd negative fronts.
nondiffusive Lery stable processel¥—9]. This has led to In Sec. V we determine that both the CKR and the QKR
studies showing that certain deterministic, nonlinear, dyhave a survival probability that decays as an inverse power
namical equations with chaotic solutions have statistics del@W for 2—0. However, in the quantum case we find that the
scribed by Ley stable distributiond10] and scaling that inverse power law has a modulation that is periodic in the
obeys renormalization group relatioftsd]. Io_ggnthm of time with a period of oscnlgtlon that diverges as
Hanson, Ott, and Antonsd8] investigate, using numeri- fi~© wherea~0.14. This dependencg IS descrlbeq by & pos-
cal calculations, the effect of finite on the manner in which _tulated quantum coherenqy mechgn!sm that retains the scal-
tiny integrable regions of phase space influence the statistic}9 Property O.f the cantori In the vicinity of the accelerator
description of the evolution of the QKR. The integrable re-mOde’ Wh'le. yielding "?‘S““"Va' probability that goes over to
gions are small, relatively stable KAM islands in phase spac&€ @ppropriate classical result &s-0. In Sec. VI we for-
for the CKR that are referred to as accelerator modes, sinc@u'ate some conclusions t_)as_ed on thes_e calcule_ltlons Fegard'
they are in the neighborhood of accelerating fixed pdigts Ing the correspondence principle and microscopic scaling.
cf. Fig. 1. Such fixed points and the corresponding modes
cause the trajectories falling in their neighborhood to be Il. GOLD MODEL
trapped for long times and acceleratsd that their momen-
tum increases linearly in timeand consequently the global ha
mean-square momentum increases faster than linearly. In t
classical case the number of particles in an accelerator mo&%
is known to decay as an inverse power law in tif@g In the
guantum case it was found that for large valuesiof the
numerical calculations, the survival probability density de- X
creases exponentially in time with a rate of decay propor- —=¢(1). 2
tional to exp— 1/%]. This dependence of the rate on the value dt

of Planck’s constant led Hanson, Oftt, and Antonghto pf special interest is the case whej@) is a two-state sto-

interpret the exponential decrease in time of the surviva . : .
probability as a tunneling effect. On the other hand, by de_chast|c process taking the valuedV. The evolution of the

; " : bability densityp(x,t), wherep(x,t)dx is the probability
creasingh a transition value was found after which the decaypro ) . - n ;
of the probability was no longer exponential. This transitiont.hat the.dyn'am|cal variable is n the mFervad,(}dx) at.
me t, is given by the exact integrodifferential equation

has an interpretation in terms of time scales such that thcfﬁ12 14
exponential decay occurs for early times, those times associ=~"~ ™
ated with large values df, and this other decay occurs for P ¢ P
later times as;oma_tted_ with smaller \_/alueiioWe are herein — p(x’t):f (E(D)E(L")) —5 p(x,t")dt’. €)
concerned with this different behavior and find this decay to at 0 X
be inverse power law. The scaling, as manifest in the inverse o
power law, suggests a renormalization group description folt iS clear from Eq.(3) that the character of the diffusion
quantum phenomena. erends on the ch0|_ce of the_ correlation for gfkuctuations .

To study how anomalous diffusion or, equivalently, thein Ed. (2). Normal diffusion is a consequence of the exis-
Lévy distribution, arises in quantum dynamical systems we€nce of a microscopic time scale, defined by
present equivalent calculations for the CKR and the QKR .
ano_l compare the Corresponding_survival prqbabilitieﬁ & T:f D (t)dt, 4
varied. It is well known that with the choice of strength 0
parameterK=6.9115 in Eq.1), that gives rise to accelera-
tor modes, the CKR generates highly correlated fluctuationwhere ® (t) is the stationary two-time-correlation func-
in the momentum variable leading to anomalous diffusiontion. If the correlation decays quickly enough to maké-
with H=1— B/2. Herep is the index of the inverse power- hite, we can explore the random-walk process for tirhes
law memory function that can be associated directly with thevery large compared te. The time scale separation between
slope of the inverse power-law decay of the particle populathe random-walk process and the velocity fluctuations allows
tion trapped in the accelerating mod&s10,12. Only those the central limit theorem to work, so that fexe a Gaussian
trajectories trapped by the accelerator modes contribute teiffusion process for the two-state model is eventually
the anomalous diffusion and there are always two suclieached. The diffusion is anomalous if the correlations of the
modes, one accelerating particles to positive momentum arffuctuations are stationary and have the asymptotic inverse
the other accelerating particles to negative momentumpower-law form
Therefore, disregarding the irrelevant trajectories that are
moving erratically in the chaotic sea, we consider this dy- (1) = (€1EO) A
namical model, the CKR, to be a generator of a virtually ¢ ) (AVB+1)P
dichotomous fluctuation process. Thus, we examine a two-
state stochastic model in Sec. Il to further our understandingnd the power-law index is in the range

The statistical approach to classical anomalous diffusion
s a long history and has recently been the subject of a
mber of papers; see, for example, R€f2—14. This sto-
astic perspective rests on the simple one-dimensional dif-
ferential equation:

®
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0<pB<l. (6) 25x107°
P(p.t)

When r—, as Eq.(3) does for the inverse power law with 20 —
an index in the rangé€6), there is no time scale separation
between the macroscopi@iffusive) and the microscopic
processesfluctuations of¢) and the resulting statistics are
not Gaussian in general. In fact it has been shown that unde
certain conditions, that is, when the constant in the denomi- 1o
nator in Eq.(5) can be neglected, Ed3) is a fractional
derivative whose solution is bimodgl4].

The model given by Eq3) with condition(5) has so far 5
been discussed in a stochastic or random-walk context. It ha
been shown elsewhere that there is also a dynamical realize 0 :

tion of this mode[12]; one in which the stochastic nature of T T T T ' T '
the velocity is generated by an intermittent chaotic map, e cteo -80 ° S0 00 pse
namely, the map of Geisel, Nierwetberg, and Zach&H].
This relation was established by Zumofen and Klaftes]
where they showed that such a map produced a long-tim
a-stable Ley process. Such a’lvg process, defined as the
solution of the  Bachelier-Smoluchowski-Chapman-
Kolmogorov (BSCK) chain condition, is Markoviaf7], but

FIG. 2. Classical distributiorP(p,t) after 20 iterations of the
map (1), continuous line, and the theoretical prediction of E),
ones. The quantitp is the dimensionless momentum from Eg).
and the probability distribution is normalized to 1.

2 L o I(t)
the variablex, at any finite time, can change by an arbitrarily P(X,1) =P (X)) O(|X| — Wt) + —— {S(x+Wt)
large amount, with a given inverse power-law distribution. # 2
The process described by E®), supplemented by Eqs5) + S(x— W)} )

and (6), is by contrast non-Markovian. However, it is pos-

sible to prove[12] that the statistical equivalence of this where@(-) is the Heaviside unit step function; the amplitude

non-Markovian process with am-stable Ley process is  of the peaks is determined by the correlation funcign
guaranteed by the possibility of replacing the time nonlocal-

ity of the dynamical process with a space nonlocality. This II(t) =kd (1), 9
interchange of space and time produces the same effect as a

process that is originally nonlocal in space. Yet, at everyandk is a constant that is determined by the specific realiza-
finite time, the equivalence of the solution to E8) with the  tion of the numerical calculation. There is excellent agree-
“true” Le vy process cannot be complete, because ay/Le ment between the form of the solution given by E8). and
process is characterized by infinite central momentsc;of humerical experiments on the CKR as shown in Fig. 2, see
whereas in the random-walk approa@@), with excursions Ref.[18]. ThUS, we have that the GOLD model results in a
based on steps having a finite spa&d the distribution of truncated Ley distribution and is characterized by two bal-
the diffusing variable at time is truncated atx|=Wt. No listic peaks, whose intensity decays in time as the correlation
trajectory can travel, in a timg a distance larger thajx| ~ function (5).

=WH1, corresponding to the rare event in whigtt) does not

change sign for the entire time interval, implying, at every 1. NUMERICAL RESULTS FOR THE CKR

finite time, an accumulation of particles &t —Wt and at

x=+Wt. This accumulation results in two intense peaks for "¢ Hamiltonian for the classical kicked rotor is

the distribution of the diffusing variabbe, as clearly shown p2 % ¢

by the results of numerical calculatiof2,17), see also Fig. H=—=—lwicosd >, 8 j—= (10)
P . . . 21 0 e T

2. Nonetheless, the distribution will asymptotically become j=—e

an a-stable Ley process as the peaks recede to infinity and ) ) . )
their amplitudes fade to zero. Since this model has a trunwhere @ is an angular coordinate of period72P is the
cated Ley distribution as a solution it has been called the@ngular momentumi is the moment of inertiaw, is the

generator of Ley distributions(GOLD) model[18]. natural frequency of small oscillations, addis the time
The one-dimensional, centrosymmetric form of therye interval between kicks. The integration of Hamilton's equa-
distribution is given by tions of motion over a single period of a kick yields the

standard map given by E¢l), where the strength of the kick
1 e is széT2 and the scaled momentum is given Iy
Pu(XD=5 f glkxg~btkl“g . (77 =PTI/I. Thus, the evolution is completely determined by the
— numerical value of the parametkr
We iterate the standard map for a value of the strength
whereb>0. Only a handful of explicit forms of the My  parameterK =6.9115, to obtain the accelerator mode indi-
distribution are known for specific values of théwyeindex, cated in Fig. 1 from the trajectories in the vicinity of the
for example, the Gaussian far=2 and the Cauchy for=1.  accelerator fixed poirt/4,0). It is apparent from this figure
In terms of Eq.(7), where :=u<2 in the present cagd?], that the KAM islands are encircled by cantori that separate
we can write for the truncated g distribution the accelerator mode from the chaotic sea. These phase space
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structures manifest a self-similarity, see, for exampleprobability density(11) is determined by scaling time with
[9,17,19, and tend to entrap orbits that approach the accelthe rate w to obtain the approximate scaling relation
erator mode too closely. gw?p(wt)~ ¢(t).
A careful numerical study of anomalous diffusion in the  Consider a functiorF(t) that is homogeneous so that for
CKR due to accelerator modes in the standard map wagvo parameters andb we have
made by Ishizaki and co-workef49]. These authors estab-
lished that the exponent characterizing anomalous diffusion F(bt)=aF(t). (12)
(p?(t))=t?" and the exponent of the correlation function _ . , ,
P (1)< 1kP are related byH=1—B/2. Further, they found This equation has a solution of the foifi21]
that the waiting time distribution indexj(t) e 1/t*, is found At)
to be u=2+pB=4—-2H. The waiting time distribution F(t)=—5, (13
comes from continuous time random-walk theory and deter- t
mines the probability that a walkéorbit) will wait a time
betweent and t+dt in its present state before making a
transition to the other statgl7]. Ishizaki and co-workers
make a careful theoretical and numerical analysis of the mo- a=Ina/ln b (14)
mentum distribution to verify these relations among the ex-
ponents. A direct numerical evaluation of the waiting timeang the functionA(t) is periodic in Int with period Inb.
distribution ¢(t) was made by Klafter, Zumofen, and Thys, the scaling equation for the probability dengityl)
Shlesinger[17]. These latter calculations spanned six de-pas an inverse power-law solutigh(t) = A(t)/t“, where the
cades in time scale, and resulted in slight and seeminglyower-law index is given by.=2+In ¢/ln w, correcting a
irregular oscillations of the slope around the valuguh the  typo in Ref.[17]. The probability densityp(t) is identical to
theoretical inverse power-law form ah(t), but the value the waiting time distribution, and the second derivative of
was consistent with that found fdd in the corresponding  the waiting time distribution yields the correlation function
study of momentum diffusiop19]. [12]. On the other hand, the two time integrations necessary
According to the theory of Allegrini, Grigolini, and West 15 derive ¢(t) from @ (t) do not alter the structure of the

[12] sketched in Sec. I, the intensity of the ballistic peakspower-law modulation. To see this take the derivative of Eq.
delimiting the extension of the Mg distribution was also (13

observed numerically by Zumofen and Klaff&] using a

completely different argument. The relation between the d A(t) dA)/dt—aA(t)  G(t)

peaks and the correlation functiofl(t), depicted in the FTaR TN a1 =l (15
solution to the GOLD model, Ed8), suggests that we need

only examine the behavior of the peaks in the CKR calculawhereG(t) is defined by the numerator of the middle equa-
tions to determine their long-time correlation properties. Thisjon, and it is evident tha®(t) is periodic in Int with period
assumption turns out to be quite good and results in a greatly, p, Thus, the only qualitative difference between the origi-
enhanced efficiency in the calculations, especially for thosg g functionF(t) and its derivative is that the index on the

of the QKR presented in the next section. _inverse power law has increased by 1. This means that if we
The inverse power-law form of the classical waiting time ~hoose for the correlation function

distribution function was first determined by Hanson, Cray,
and Meiss[20] in the context of partially destroyed KAM g(t)
tori. They made use of the self-similar system of rate equa- PO="5 (16)
tions for the fluxes across the zones of quasistability sur-
rounding the accelerator modes and simplified the picture byhe waiting time distribution function would be
assuming that successive crossings of these cantori can be
treated as a Markov process. The chaotic dynamics thus be- h(t)
come statistically equivalent to a random walk on a hierar- t)= B2 (17)
chial lattice or Markov tree. Here we follow Klafter,
Zumofen, and Shlesingdd7] and simplify the argument and bothg(t) andh(t) maintain the logarithmically periodic
even further by introducing a hierarchy of time intervals tostrycture with the same period. In this way we can relate the
approximate, by a sum of exponentials, the probability denindex of the inverse power-law correlation function with the
sity ¢(t) of a trajectory to enter the system of belts of Ca”toriparameters in Eq11) to obtainB=In g/In w. Thus, we can
from the chaotic sea and to stay in the cantori system for ge|ate the phenomenological description of the waiting time
time t before returning to the chaotic sea: in the CKR to the exact result of the GOLD model.
To verify the prediction thaB=In g/In w in the case of
" the standard map, we used as an initial condition a Gaussian
_ > \n n distribution centered near the accelerator mode. This choice
‘1’“)‘“21 (W)™ ex —wt], 1D mimics a coherent quantum state witk-0.005 and is com-
pared with the subsequent quantum calculation. We numeri-
cally follow only those orbits that sticks to the accelerator
wherew is a rate andj is the probability of that rate occur- mode, and neglect the other trajectories, that is, we follow
ring in the process of interest. The dominant behavior of théhe ballistic peaks. The calculated area under the ballistic

where by substitution of Eq13) into Eq.(12) and equating
terms we find that the power-law index is
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oy Y
IT&_t__ > 90 Kcosaz S(t—j) . (29

Here there are two independent parameters rather than one as
in the classical case. The classical param#terK ~ deter-
mines the onset of chaoskt=0.96 and as is well known for
large values ofK the diffusion coefficient is given by

- - lassical theoretical tesul ~K?/2 [1]. The scaled period is proportional to Planck’s
] chasicalnumerical resul \ constant and is therefore a quantum parameter that vanishes
0.001 4 iooot 4 in the classical limit. We denote the expansion of the wave

, function in the basis of the eigenfunctions of the angular
\ momentum operatoffi,},

0.0001

10° 10" 10° 10° 10*

|4p(1)) =2 Con(1)| ) (20)
FIG. 3. Population of the peaHl (t) as a function of time. The m

solid line denotes the classical result while the dashed lines are

quantum calculations for different values ®f The dotted-dashed ibe th uti X fEl h
line indicates the theoretical prediction [8]. The timet is ex- SC_“ .e the quantum evolution In terms o .oquet t (_aory.
pressed in the number of kicks and the normalizatiodIgf) is Within the framework of the Floquet formalism the time

T(1)=1. evolution is determined via successive application of a one-
cycle unitary propagatd®, which maps the wave function at

peaks as a function of time is depicted in Fig. 3. The slope ofime t into the wave function at time+T. The eigenvalue

the curve is remarkably close {8=—0.67 the value pre- problem for the prOpagatc(E may be written as

dicted by the numerical calculation &f via the second mo- .

ment of the mean square moment{ih7,19. The broadened CINn)y=exd —iE,]|\n), (21
initial condition implies that a given number of trajectories

are located within the stable part of the accelerator modewvhere theE, are called quasienergies and for a bounded
These trajectories remain confined there forever, and are réystem are real numbers. The corresponding eigenfunction
sponsible for a permanent ballistic peak, which is perceived\ ) are referred to as quasienergy states or Floquet states. It
as a long-time plateau depicted in the solid curve. Withoutnay be shown that\ ,) are the eigenvectors of the Hermit-
such trajectories in the plateau there would be an eventu#n operatorH —ifd/dt and consequently form a complete
crossover at long time to an exponential decay. This latteprthonormal basis. To obtain the matrix representatioft of

decay is related to round-off errors dependlng on the COMm the angu|ar momentum e|genbas|s notice that
puter precision. We note in fact that round-off errors are

indistinguishable from externally generated random fluctua- -

tions of a given intensity, the effect of which is known to be (¥ lﬁ(T)):Ek (4|Cl i (bid (0)) (22)
a crossover from the inverse power-law behavior to an ex-

ponential ong22,23. At the same time, we note that the and if we chose the initial state such that

calculated curve does not imply oscillations as intense as

those of Ref[9], probably as a consequence of the fact that (G $(0)) =6, ;v (23)
the method of following the peak is more reliable than doing I
the full calculation at each time step.

The periodicity of the HamiltoniafiL0) enables us to de-

then

IV. NUMERICAL RESULTS IN THE QUANTUM CASE (4l ¢(T)>=<¢j|é|¢j,>. (29

We now turn our attention to the QKR. The Hamiltonian
is, of course, the same as that in the previous section and w
now wish to numerically integrate the Schinger equation
for the kicked rotor,

Thus thej’ column of the matrix representation @fmay be
"Calculated using the initial conditiof23) and integrating the
time-dependent Schdinger equation over one period of the
perturbation. We can then numerically solve the eigenvalue

2 g2 problem(21). For timest=kT, k=1,2,... the wave function
|ﬁ — w(e t)= 57 542 V0. t)—l w2 cos may be written as
. [W(KT)) = ext —iE k] A )| #(0)).  (25)
X S(j—tIT)w(6,1). 18 m
2 STy (18)

It is apparent from Eq(25) that only the Floquet states over-
Following Hanson, Ott, and AntonsdB] we introduce the lapping the initial wave function contribute to its subsequent
scaled time=t/T and the scaled periog=#T/l so that Eq. time evolution. These states are frequently referred to as the
(18) reduces to Floquet spectrum of the wave function.
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25x10” Ref.[3] for a somewhat smaller value f At first sight Fig.
P(p,1) 4, like Fig. 2, may be interpreted as a strong confirmation of
the analogy between the QKR and the CKR. In their calcu-
lation Hanson, Oftt, and Antonsel8] observed that the
“sharp peaks” travel linearly in time and leave behind what
they referred to as a “wake.” From the solution to the
GOLD model given by Eq(8) we see that for sufficiently
small values of Planck’s constant that their wake is expected
to eventually become a truncatedvedistribution in mo-
mentum space and the peaks rather than being sharp have a
finite area. Note, further, that the amplitude of the peaks is
given by the correlation function of the dichotomous process
and therefore this term ought to decay as an inverse power
07 T law. However, like Hanson, Ott, and Antonsg3], we find

80 ree s 0 so 100 p 10 that the intensity of the ballistic peak in Fig. 4 decays in time
as an exponential, in striking contrast with the classical pre-
diction (8). The reason for this discrepancy between the de-
cay of the peaks in the QKR and the CKR is the fact that for

Exploiting the kicked nature of the system we can cast th large values ofi the dominant mechanism for exiting the
P 9 y ?egion of the accelerator mode is tunneling, something not

quantum time evolution as the: application of the following available to the CKR.
mapping to the wave function in the momentum representa- Hanson, Ott, and Antonsdig] find that a transition oc-

tion: curs, for the numerical value of tifeused in the calculation
smaller than a critical value, out of the region where the rate
Co(tr,)=> (™3 /(E)C (1) (26)  of exponential decay in time of the survival probability is
monel e M4 ) TmEme exp [1/%] to some other dependence dnwhich is not de-
termined analytically. Based on our analysis of the CKR and
where J,, denotes the Bessel function of order and the GOLD model we expect an inverse power-law decay to
{Cn(1)} are the expansion coefficients in the momentum babe recovered as—0 in agreement with the correspondence
sis at timet, see for examplg€24]. The superscript notation principle. However, we find that the classical result is not
on the time indicates the value just befdre) or just after  fully recovered asi—0 and effects of a purely quantum
(+) the kick. origin are present in all the explorédregions.

To make the numerical calculation as efficient as possible, The initial condition for the QKR is a Gaussian wave
we use fast fourier transform techniques to perform the conpacket to mimic the classical ensemble of initial conditions
volution in Eqg. (26), but notice that in the exploration of chosen in a way that the corresponding Wigner distribution
small # values the dimension of the vector necessary to dehas its maximum in proximity of the accelerator mode. Due
scribe the entire wave function becomes excessively largdo this particular choice of initial condition the Wigner func-
For this reason we limit the calculation to following the evo- tion can be directly interpreted as a probability distribution
lution of the ballistic peak, just as we did in the classicalthat is then used to determine the initial conditions in the
case. This procedure affords significant numerical advaneorresponding classical simulation. This allows for a direct
tages. Due to the finite bandwidth of the Floquet operatocomparison of the quantum and classical evolutions. Chang-
spectrum, only a small part of the wave function contributedng # obviously affects the width of the initial quantum dis-
to the peak dynamics. Thus, by concentrating our analysis offibution and therefore the set of classical initial states as
the peak, we are able to explore smaller value# aind/or  well. In Fig. 3 we graph the area of the peak in the quantum
longer times than has been done in previous calculationsalculations corresponding to different valuesiais a func-
[3,4,25. Nevertheless, according to the results obtained irtion of time. We see that, far smaller than 102, the area of
Ref.[12], this procedure provides the same information conthe peak]I(t), exhibits the algebraic decay in time expected
cerning the anomalous dynamics that a complete wavefrom the classical studig®,16]. This type of decay implies
function analysis would yield. This is certainly true fbrso  that the dynamics of the QKR follows that of the CKR for
small and time so short as to make the correspondence prismall 7. On the other hand, fot>10"2, an exponential
ciple valid. However, a deviation from the inverse power-decay for the peak is found in agreement with that obtained
law decay of the classical correlation function is a good in-in Ref. [3]. In the corresponding classical simulations no
dicator of the birth of quantum phenomena, even at versignificant dependence on the initial distribution width has
short times. been detected.

The calculational strategy of following the ballistic peak  The results obtained do appear, however, to depend in a
rather than the entire wave function is the most importansubtle way on the location of the initial state. Further inves-
aspect of our numerical treatment. This approach is based digation of this sensitivity is required to completely under-
the insight provided by the GOLD model where we saw thatstand the nonstationary nature of the phenomenon.
the time dependence of the ballistic peaks is given by the We find that in all the quantum calculation the inverse
correlation function. An example of a complete calculation ispower-law behavior is eventually lost and replaced by an
shown in Fig. 4 where we reproduce one of the calculation okxponential decay. We interpret this second transition in

20 -

15

FIG. 4. Quantum probability density after 20 iterations for the
QKR, to be compared with its classical counterpart in Fig. 2.
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FIG. 5. Decay of the quantum peak fo+0.001, solid line, and

its numerical fit obtained by using E¢33). The fit is shifted for
graphical purposes. The normalization dift) is I1(1)=1.

FIG. 6. The dependence of the renormalization group oscillation
dimensionless frequency in Eq. (33) on 1£ as obtained by fitting
the quantum peak decays. The dashed line denotes a power-law
. fitting with slopea=0.14
terms of two phenomena, namely, the tunneling between the
fractal region of the cantori and the stochastic sea, and thigcrease. Thus, as the frequency decregsesod increases
quantum induced breakdown of classical self-similaf#}).  the intensity of the oscillations should go to zero. This latter
We do not pursue an investigation into this effect here, bubehavior is observed in Fig. 6 where the frequency of the
rather leave it as a subject for future work. Thus, leaving theyscillation in the QKR is plotted versus (). Therefore
eventual crossover from inverse power law to exponentiathe source of the quantum modulation requires the introduc-
decay aside, we see that the QKR and CKR behave similarlytjon of a new physical mechanism.
both having an inverse power-law decay for sufficiently e are guided by the correspondence principle and the
small . However, the decay of the peak intensity in therenormalization group properties we wish to retain in our
quantum calculation is modulated, with the modulation func-selection of the quantum form af(t) to replace Eq(11).
tion being periodic in the logarithm of the time. The loga- The exact correspondence between the classical and quantum
rithmic oscillations suggest a renormalization group ap-calculations is lost on a time scale given by Bef®y] as

proach to an understanding of the quantum decay. tg(1/y)In(1/2) with y being the Lyapunov exponent for
the process. After this time there is an extended interval dur-
V. LOGARITHMIC OSCILLATIONS AS A ing which the dominant behavior of both calculations of sur-
MANIFESTATION OF QUANTUM COHERENCE vival probability is the inverse power-law decay, resulting

. . from the scaling properties of both the CKR and QKR. We
We have seen that the numerical calculations of the QKRyssyme a quantum mechanism to account for the existence of
show the ballistic peaks decaying as modulated inversgggijjations in the QKR that has no classical analogue. This
power laws in time, eventually going over to an exponentialnechanism accounts for the transitions between accelerator
decay. This picture is made compelling by the extremelyy,qes that works in concert with the classical mechanism
good agreement between the numerical results and the fitting,g which retains coherence across the fractal boundaries.

function We notice that a straightforward way of modifying E43),
to incorporate this coherence effect, is to assign a phase to
T(t)= Act A (EEQY n exp(—\t) (277 the quantum transition rate;
w=weB, (29

as shown in Fig. 5. The functiof7) has five parameters
A, Ay, B, \, andY that are fit to the results of the numerica
calculation using a mean-square minimization program _ 1 -

Equation(27) has the form of the solution to the renormal- P(Wt)~ —=-— (1) (29
ization equation in Sec. lll, Eq12), when\=0. However, (wq)

in spite of the fact that the scaling relation produces logarith4 14 the quantum coherent effect is given by the real part of

mic oscillations we shall see that the frequencies of the osg,q scaling function. The solution to E@9) is of the same
cillations depicted in Fig. 5 do not behave as those in Edsorm a5 that given earlier, a modulated inverse power law,

(13). We see from the general solution (t2) given in[26]  gycent that the inverse power-law index is complex and may
that upon increasing the value oftinthe period of the loga- o thought of as a complex fractal dimens[@8]:
rithmic oscillations, the intensity of the oscillations in-

creases. This behavior is not consistent with the correspon- Inq i

dence principle, which, since the oscillations are not present a=2+ Inq—+iB:’“_'K’ (30)
in the CKR calculations, would suggest that the intensity of

the oscillation for the QKR should disappear 7as>0, not  where the real part of the index is

| so that the scaling relation found earlier is replaced with
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IngInw adoption of the fitting formul&27) to determine the param-
n=2+ (Inw)?<B? (31)  eter InT and from it the coherence pha& which must
satisfy
and the imaginary part of the index is )
lim B=0. (39
Bling h=0
= (In W)2+ BZ" (32)
The determination of this crucial parameter allows us to as-
We therefore obtain sess the amount of quantum coherence present in the seem-
ingly classical behavior. In Fig. 6 we show the dependence
_ A, cogk Int) qf the frequency of oscillation of the waiting time distribu-
Re ¢(t)~ — (33  tion function on the value of Planck’s constant used in the

calculation. From the negative slope of the curve we reach
the conclusion that the coherence paramBterust have the

and when the “coherence strength” is very sm@linw ¢, tional form

<1, this reduces to

~ A, cogY Int) Boc (39
Re ¢(t)~ —7—, (34)
with a=0.14. Thus, the coherence resulting in logarithmic
h oscillations is a genuinely quantum effect, due to the depen-
where dence of the frequency of oscillation dnand seems to be a
B slowly decaying function ofi so as to vanish in the classical
Y= — (n—2). (35) limit.

To recover the form of the fitting function we recall that V1. CONCLUSIONS

the frequency of oscillationt35), must vanish agi—0, so We see from Fig. 5 that the agreement between the fitting
that Eq.(34) cannot be the sole contribution to the quantumfynction and the numerical results are so good as to make it
waiting time distribution function. Therefore to obtain the jmpossible to distinguish the numerical result from the fit.

proper scaling behavior of the waiting time distribution in e think that this is compelling evidence that the logarith-
the classical limit we add the contribution @&4) and(13)to ¢ oscillations are not an artifact of the calculational tech-

obtain nique. Furthermore, due to the fact that the classical case
does not contain such oscillations for the parameter values
A +A, CO 2m Int chosen in the cal<_:u|ation, but results an unr_nodulated inverse
Aq A, 1rme InT power-law behavior, we reach the conclusion that these os-
Pauad 1)~ wt Re{t—a - t~ - (38 cillations are of a guantum origin.

We distinguish a number of different time domains in the

Here the complex fractal dimension is given ly=y  Present calculation. First of all is the time scageidentified
+i2w/In T, and the imaginary part of the fractal dimension by Berry [27] and such that the results of the classical and
gives the period of modulation of the inverse power law, sedluantum cases diverge whetge<(1/y)In(1/%) with y being
Ref.[28], and InT=27 In W/[B(x—2)] is the period of oscil- th_e Lyapunov exponent for_ the_ process. This time scale is
lation induced by the coherence mechanism. fairly short and is observed in Fig. 3, where we see the onset
We have seen that the inverse-power-law structure modRf logarithmic oscillations in under 10 kicks that are ob-
lated by logarithmic oscillations remains invariant upon dif- S€rved quantum mechanically, but not classically. This is
ferentiation and integration so the structure of the correlatiorSO the time scale on which Hanson, Ott, and AntoriSgn
function and the area of the peak will maintain the sameccount for the exponential decay of the survival probability
structure. In the formula we use to fit the decay of the area odpy means of tunneling. The second time scale occurs after
the peak(27) we include also a long-time exponential decaythis tunneling region for values of Planck’s constaft,
that does not have any justification in the present model, buE 10 %, after which time the mechanism for escape is no

was detected in the calculations and may play an importarlPnger tunneling so the decay transitions from exponential to
role in future work. The power-law indeg in Eq. (27) is  inverse power law. Thus, after the crossover, anomalous dif-

expected to be the same as in the classical case fusion appears in the quantum dom@d. Even if the quan-
tum and classical results diverges at early tiffoz t<<100)
s =1m ¢guaft), (37)  [4], the subsequent quantum behavior resembles the classical
) one, namely, that the area under the peak shows an inverse

power-law decay, however, one that is modulated with loga-
since in the case of very small Planck’s constant, the timeithmic oscillations. This behavior is eventually dominated
after which the exponential decay becomes important lieby exponential decay, which is not necessarily related to the
beyond the range of our observation, i.e., the parameter tunneling processes found by Hanson, Ott, and Antofidgn
always extremely small. Further, to ensure tH4t) is posi-  but rather may be related to the reemergence of the wave
tive definite we must have tha&;>A,. We focus on the function in the chaotic sea for small values of Planck’s con-
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stant. We shall study this late-time breakdown in detail in abecomes extremely low making it very difficult to see more
forthcoming paper. than two or three oscillations while with bigger valuesfof
The quantum intermediate time region, where the correan early transition to normal diffusion and so to exponential
spondence between the classical and quantum evolution iecay of the peak cancels the eff§gl. In conclusion, the
lost, but retains the overall power-law decay, has been cargneaning of the numerical results of this paper is that devia-
fully explored in this paper. We found that quantum me-tions from the classical behavior occurs from the earliest

chanical properties show up under the form of oscillationseyolution under the form of a quantum generated modulation
around the expected inverse power-law decay of the peakgs the classical results.

We have established that these oscillations can be repro-
duced very well adopting a fitting function the structure of
which is defined on the bases of renormalization group argu-
ments, including a genuine quantum coherence mechanism.
Furthermore, we have to say that only a few oscillations We thank the Italian CNR and NATO, as well as the
can be detected. At very small values fofthe frequency Office of Naval Research, for partial support of this work.
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